Implementation of the K-Nearest Neighbor Algorithm to Predict Air Pollution
DOI:
https://doi.org/10.58777/its.v1i1.123Keywords:
Air Pollution, Keywords: Air Pollution, , RapidMiner, PredictsAbstract
Air pollution is a serious issue that impacts air quality and human health. In this study, the K-Nearest Neighbor (KNN) algorithm is applied using Rapidminer software to predict air pollution levels. The research aims to predict air pollution levels based on various air quality parameters such as particulates, PM10, PM2.5, CO, NO2, SO2, and O3. By implementing the K-Nearest Neighbor algorithm in Rapidminer, the predicted values for air pollution data resulted in an accuracy of 93.94%. This study concludes that employing the K-Nearest Neighbor algorithm using Rapidminer software can be an effective method for predicting air pollution levels. With a strong accuracy rate of 93.94%, this can have a positive impact on both human health and the environment. The predictive model developed can aid decision-making and enhance awareness among the public regarding the importance of maintaining air quality management.
References
Abidin, J., Artauli Hasibuan, F., kunci, K., Udara, P., & Gauss, D. (2019). PENGARUH DAMPAK PENCEMARAN UDARA TERHADAP KESEHATAN UNTUK MENAMBAH PEMAHAMAN MASYARAKAT AWAM TENTANG BAHAYA DARI POLUSI UDARA. Prosiding SNFUR-4.
Adhi Putra, A. D. (2021). Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(2), 636–646. https://doi.org/10.35957/jatisi.v8i2.962
Amalia, A., Zaidiah, A., Isnainiyah, I. N., Program, ), S1, S., Informasi, S., Komputer, I., Veteran, U., Jl, J. R., Fatmawati, P., & Labu, J. (2022). PREDIKSI KUALITAS UDARA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR.
Iriadi, N., & Nuraeni, N. (2016). kajian penerapan metode klasifikasi data mining algoritma C4. 5 untuk prediksi kelayakan kredit pada bank mayapada jakarta. Jurnal Teknik Komputer Amik BSI, 2(1), 132–137.
Jollyta, D., Ramdhan, W., & Zarlis, M. (2020). Konsep Data Mining Dan Penerapan. Deepublish.
Kurniawan, H. (2021). Pengantar Praktis Penyusunan Instrumen Penelitian. Deepublish.
Larasati, D. A. (2023). Penerapan Kecerdasan Buatan dalam Analisis Data untuk Pengambilan Keputusan yang Lebih Baik. Paradoksal Article, 1(1).
Nurjanah, S., Siregar, A. M., & Kusumaningrum, D. S. (2020). Penerapan Algoritma K – Nearest Neighbor (KNN) Untuk Klasifikasi Pencemaran Udara Di Kota Jakarta. Scientific Student Journal for Information, Technology and Science, 1(2), 71–76.
Purwanto, D. D., & Honggara, E. S. (2022). Klasifikasi Kategori Hasil Perhitungan Indeks Standar Pencemaran Udara dengan Gausian Naïve Bayes ( Studi Kasus : ISPU DKI Jakarta 2020 ). 04(2), 102–108. https://doi.org/10.52985/insyst.v4i2.259
Ridho, I. I., & Mahalisa, G. (2023). ANALISIS KLASIFIKASI DATASET INDEKS STANDAR PENCEMARAN UDARA (ISPU) DI MASA PANDEMI MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM). Technologia : Jurnal Ilmiah, 14(1), 38. https://doi.org/10.31602/tji.v14i1.8005
Sembiring, M. T., & Hasibuan, C. F. (n.d.). Data Science: Strategi UMKM dalam Pengambilan Keputusan.
Setianingsih, S., Chasanah, M. U., Kurniawan, Y. I., & Afuan, L. (2023). IMPLEMENTATION OF PARTICLE SWARM OPTIMIZATION IN K-NEAREST NEIGHBOR ALGORITHM AS OPTIMIZATION HEPATITIS C CLASSIFICATION. Jurnal Teknik Informatika (Jutif), 4(2), 457–465.
Umri, S. S. A., Firdaus, M. S., Primajaya, A., Studi, P., Informatika, T., Komputer, F. I., Karawang, U. S., Karawang, K., Machine, V., Neighbors, K., Bayes, N., Backpropagation, N. N., Neighbors, K., & Machine, S. V. (2021). Analysis and Comparison of Classification Algorithm in Air. 4(2), 98–104. https://doi.org/10.33387/jiko
Wicaksono, R. R., KM, S., KKK, M., Putri, M. S. A., ST, S., Sulistiono, E., Ismarina, S. S. T., Hanif, M., ST, S., & KL, M. (2023). Manajemen kesehatan lingkungan. Cendikia Mulia Mandiri.
Zulfiansyah, A. D. K., Kusuma, H., & Attamimi, M. (2023). Rancang Bangun Sistem Pendeteksi Keaslian Uang Kertas Rupiah Menggunakan Sinar UV dengan Metode Machine Learning. Jurnal Teknik ITS, 12(2), A166-173.
Downloads
Published
Issue
Section
Copyright (c) 2023 Claudyana Gabrillia Evitania
This work is licensed under a CC Attribution-ShareAlike 4.0

