Application of Data Mining to Predict Stock Price Movements in MNC Bank Using K-Nears Neighbor

Authors

  • Lyvia Lyvia Lyvia

DOI:

https://doi.org/10.58777/its.v1i2.129

Keywords:

Data mining, K-Nearest Neighbor (K-NN), Prediction algorithms, Stock price movements

Abstract

This study applies data mining methods to predict stock price movements in MNC Bank companies using the K-Nearest Neighbor (K-NN) algorithm. Accurate prediction of stock prices is crucial for investment decisions and risk management in the financial sector. The K-NN algorithm was selected due to its effectiveness in classifying data based on proximity to training data. The study begins with collecting and cleaning historical stock price data from PT MNC Bank, removing irrelevant or incomplete entries. Significant features are then extracted from this dataset. The data is split into training and test sets. The K-NN model is trained using the training set to predict stock prices on the test set. Model accuracy is assessed by comparing predictions with actual stock prices, with success measured by the percentage of correct predictions. Results indicate that the K-NN model achieved an accuracy of 83.84% on the PT MNC Bank dataset, demonstrating strong predictive capabilities. However, it is noted that accuracy can be influenced by factors such as the volume of training data, the selected features, and K-NN parameter settings. These findings can serve as a valuable reference for investors and market participants, aiding in more informed investment decisions based on improved stock price predictions.

References

Adinugroho, S., & Sari, Y. A. (2018). Implementasi data mining menggunakan WEKA. Universitas Brawijaya Press.

Anisatuzzumara, A. (2024). Implementasi Latent Dirichlet Allocation (LDA) dan K-Nearest Neighbors (KNN) pada Sistem Rekomendasi Jurnal Terindeks Garuda. Universitas Islam Sultan Agung Semarang.

Harsemadi, I. G. (2023). Perbandingan Kinerja Algoritma K-NN dan SVM dalam Sistem Klasifikasi Genre Musik Gamelan Bali. Informatics for Educators and Professionals. Journal of Informatics, 8(1), 1–10.

Muallif, I. S., Budiman, H., & Ransi, N. (2023). Penerapan Data Mining untuk Prediksi Pergerakan Harga Saham Menggunakan Algoritma K-Nearest Neighbor. Prosiding Seminar Nasional Pemanfaatan Sains Dan Teknologi Informasi, 1(1), 297–306.

Pratama, Y. H. (2020). Desain dan Analisis Algoritma Genetika untuk mengoptimasi Arsitektur Algoritma Jaringan Saraf Tiruan dalam Pengenalan Digit yang mengalami Derau pada Studi Kasus: SPOJ HIR Hard Image Recognition. Institut Teknologi Sepuluh Nopember.

Pratiwi, A. O. C. (2023). Klasifikasi Jenis Anggur Berdasarkan Bentuk Daun Menggunakan Convolutional Neural Network dan K-Nearest Neighbor. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 3(2), 201–224.

Rian, N. H. (2023). Analisis Keakuratan Penggunaan Indikator Teknikal Moving Average 50 (MA50) dan Relative Strenght Index 21 (RSI 21) dalam Menentukan Sinyal Jual dan Sinyal Beli pada Trading Saham (Studi Kritis pada Indeks ISSI Sektor Pertambangan di tahun 2021). UIN Prof. KH Saifuddin Zuhri.

Setiawan, I. A. (2022). Tingkat Akurasi Indikator Analisis Teknikal Bollinger Bands dan Exponential Moving Average dalam Penentuan Sinyal Jual dan Beli Saham (Studi Kasus Pada Emiten di Indeks IDXENERGY Yang Tercatat di Bursa Efek Indonesia Tahun 2021). Universitas Siliwangi.

Setiawan, Z., Fajar, M., Priyatno, A. M., Putri, A. Y. P., Aryuni, M., Yuliyanti, S., Widiputra, H., Meilani, B. D., Ibrahim, R. N., & Azdy, R. A. (2023). Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia.

Sianturi, F. A., Hasugian, P. M., Simangunsong, A., & Nadeak, B. (2019). Data Mining: Teori dan Aplikasi Weka (Vol. 1). IOCS Publisher.

Sukamulja, S. (2022). Analisis laporan keuangan: Sebagai dasar pengambilan keputusan investasi (Edisi Revisi). Penerbit Andi.

Tauran, E. R. (2021). Prediksi Harga Saham Bank Central Asia, Tbk Berdasarkan Data Dari Bursa Efek Indonesia Menggunakan Metode K-Nearest Neighbors (Knn). TeIKa, 11(2), 123–129.

Zahra, A., Chandra, C., & Nurfarida, R. (2023). Aplikasi Teori Gelombang Elliott dalam Memprediksi Pergerakan Harga di Pasar Saham. EKALAYA: Jurnal Ekonomi Akuntansi, 1(4), 18–27.

Zulfallah, F. H. (2022). Implementasi algoritma KNN dalam mengukur ketepatan kelulusan mahasiswa UIN Syarif Hidayatullah Jakarta. Perpustakaan Fakultas Sains dan Teknologi UIN Jakarta.

Downloads

Published

2024-05-28

Issue

Section

Articles
image host Views: 132 | image host Downloaded: 97